Skip to content

You can download the code of this step here or all the steps here.

For Notebooks

The "Getting Started" Notebook is available here. In Taipy GUI, the process to execute a Jupyter Notebook is different from executing a Python Script. It is important to check the Notebook content and see the documentation.

Step 9: Manage Scenarios

Now that you know how to create a scenario, submit it and change it, you will create in this step a Taipy program able to manage multiple scenarios (and pipelines).

Dynamic selectors

Let's manage multiple scenarios through a dynamic scenario selector. This selector will be updated whenever a new scenario is created. It will store the "id" of the scenarios and their names. For clarity, only their names do get displayed (in the selector).

This code initializes the scenario selector with previously created scenarios. If there are no scenarios yet, the scenario selector will be empty.

# Get all the scenarios already created
all_scenarios = tp.get_scenarios()

# Delete the scenarios that don't have a name attribute
# All the scenarios of the previous steps do not have an associated name so they will be deleted,
# this will not be the case for those created by this step
[tp.delete( for scenario in all_scenarios if is None]

# Initial variable for the scenario selector
# The list of possible values (lov) for the scenario selector is a list of tuples (scenario_id, scenario_name),
# but the selected_scenario is just used to retrieve the scenario id and what gets displayed is the name of the scenario.
scenario_selector = [(, for scenario in tp.get_scenarios()]
selected_scenario = None

Beside adding to the Markdown the new scenario selector, we also add a new "Create new scenario" button. This button calls the create_scenario() function. So, now each time we modify the parameters (day, max_capacity, n_prediction) we will create a new scenario upon clicking on this "Create new scenario" button.

scenario_manager_page = page + """
# Create your scenario

**Prediction date**\n\n <|{day}|date|not with_time|>

**Max capacity**\n\n <|{max_capacity}|number|>

**Number of predictions**\n\n<|{n_predictions}|number|>

<|Create new scenario|button|on_action=create_scenario|>

## Scenario 

## Display the pipeline

<|{predictions_dataset}|chart|x=Date|y[1]=Historical values|type[1]=bar|y[2]=Predicted values|type[2]=scatter|height=80%|width=100%|>

Here is the main code for managing scenarios. As you can see, the architecture doesn't change from the previous code. Two functions have been altered: _create_scenario() and submit_scenario().

def create_name_for_scenario(state)->str:
    name = f"Scenario ({'%A, %d %b')}; {state.max_capacity}; {state.n_predictions})"

    # Change the name if it is the same as some scenarios
    if name in [s[1] for s in state.scenario_selector]:
        name += f" ({len(state.scenario_selector)})"
    return name

def update_chart(state):
    # Now, the selected_scenario comes from the state, it is interactive
    scenario = tp.get(state.selected_scenario[0])
    pipeline = scenario.pipelines[state.selected_pipeline]
    update_predictions_dataset(state, pipeline)

# Change the create_scenario function in order to change the default parameters
# and allow the creation of multiple scenarios
def create_scenario(state):
    print("Execution of scenario...")
    # Extra information for the scenario
    creation_date =
    name = create_name_for_scenario(state)
    # Create a scenario
    scenario = tp.create_scenario(scenario_cfg,creation_date=creation_date, name=name)

    state.selected_scenario = (, name)
    # Submit the scenario that is currently selected

def submit_scenario(state):
    print("Submitting scenario...")
    # Get the currently selected scenario
    scenario = tp.get(state.selected_scenario[0])

    # Conversion to the right format (change?)
    day = dt.datetime(,, 

    # Change the default parameters by writing in the Data Nodes
    scenario.creation_date =

    # Execute the scenario

    # Update the scenario selector and the scenario that is currently selected
    update_scenario_selector(state, scenario) # change list to scenario

    # Update the chart directly

The function below will update the scenario selector whenever the user creates a new scenario. It is called in the submit_scenario function.

def update_scenario_selector(state, scenario):
    print("Updating scenario selector...")
    # Update the scenario selector
    state.scenario_selector += [(,]

This graph summarizes the code for the GUI.


Automating the graph update - on_change function

The on_change function can automatically change the graph when another pipeline or scenario is selected.

def on_change(state, var_name: str, var_value):
    if var_name == "n_week":
        # Update the dataset when the slider is moved
        state.dataset_week = dataset[dataset["Date"].dt.isocalendar().week == var_value]

    elif var_name == "selected_pipeline" or var_name == "selected_scenario":
        # Update the chart when the scenario or the pipeline is changed
        # Check if we can read the Data Node to update the chart
        if tp.get(state.selected_scenario[0]) is not None:

Run the Gui.